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Diffraction Patterns of Thin Perfect Crystals and Their Applicability to the Determination 
of Structure Factors 

BY M. RENNINGER 

Abteilung 'Interferenzoptik', Betriebseinheit Kristallographie, PhiIipps-Universitiit Marburg, Germany (BRD) 

(Received 2 April 1974; accepted 12 August 1974) 

Diffraction patterns containing Pendell6sung oscillations produced in different orders of diffraction 
by thin slices of perfect silicon crystals of different thicknesses have been recorded for both Bragg and 
Laue cases. The agreement of the curves obtained with those calculated from the dynamical theory is 
believed to be good enough to allow the derivation of values of the corresponding structure factors. 
For silicon 422 the valuer0= 6"81 +0-05 has been found. 

I. Introduction 

In the early stages of the development of the dynami- 
cal theory, Ewald often referred to the oscillations of 
equal inclination by which diffraction patterns of 
crystal plates of finite thickness should be 'modulated'. 
This kind of Pendell6sung was not open to observation 
until recently, although Ewald at that time felt that 
it would be one of the most satisfactory confir- 
mations of his theory. In those early days, the pro- 
hibitive difficulty consisted in finding a way of pre- 
paring very thin leaflets of highly perfect crystals. 
Only when the new semiconductor industry supplied 
crystals having a perfection previously unknown, cry- 
stals which in addition can be prepared without suf- 
fering inner damage, did an experimental investigation 
become possible. Thus, in the special issue of Acta 
Crystallographica in 1968 commemorating P. P. 
Ewald's 80th birthday three papers simultaneously ap- 
peared pursuing that aim, each of them achieving a 
different partial success: Batterman & Hildebrandt 
(1968) obtained some records containing a row of side 
maxima of a Bragg-case diffraction pattern, Kohra & 
Kikuta (1968) gave a whole Laue-case diffraction pat- 
tern, and the author of this paper (Renninger, 1968) 
obtained whole patterns, in both Laue and Bragg cases, 
but in an indirect, photographic way only. Further 
examples of recorded curves were given later by 
Lefeld-Sosnowska & Malgrange (1968), by Hashizume, 
Nakayama, Matsushita & Kohra (1970), and finally 
by Renninger (1969). The endeavours of the latter 
extended in the mean time to an improved control in 
preparing thin crystal sheets and furthermore to the 
quantitative following up and comparing with theory 
the variation of the curve shapes - of the R0 as 
well as of the RM reflexion - with crystal thickness, for 
different diffraction orders in the Bragg and Laue cases. 
q-he author then tried to find out how far the accuracy 
reached would be sufficient and useful for precise 
measurement of structure factors. A summary report 
on all these attempts will be given below. 

II. Theoretical relations 

Examples of calculated diffraction patterns as described 
may already be found in Zachariasen (1945, Fig. 
311112) and in James (1963, Figs. 26 and 31). For the 
present paper the author worked out programs for 
calculating systematic rows of patterns for some special 
cases: the symmetric Laue and Bragg case of the orders 
422 and 333 of silicon with Cu Kc~ radiation. The cal- 
culations were performed using exact formulae for 
absorbing crystals, given also by Zachariasen (1945, 
equations 130/31 and 137/38). These expressions, whose 
reproduction in detail is dispensed with on account of 
their complication, are in the form: 

Ro.u=(Po.u/P°)( AO, Vo, vn,K,?o,~'n,g,~c, do,2,0o) (1) 

where: 

po power of the primary beam, 

Po, Pu power of the diffracted beams, the undeflected 
and the deflected one, 

Vo = V o + iV o' forward scattering amplitude, 
Vu =~'n+iV~ scattering amplitude in direction 20, 

both defined by the refractive index v, the structure 
factor F and the absorption coefficient/1 as follows: 

~,o = -2 (1-v)  (2) 

2 t l  

~'o = 2n "/1, (3) 

~u~= 2(Zj+Af0j) V'o, (4) 

~;;= y z f j ' .  exp (2 . inr j -Mj) .  ~;, .  (5) 
E Afoj 

For convenience the following connecting quantities 
are introduced which contain mainly the effect of 
accounting for finite absorption: 
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1 - b  1 ~'0'- 

g - 2 1 / ~ - i  • K .  i~,~ I , 

Iv/ l. K -  ' 

(6) 

(7) 

Yo and yn are the direction cosines of primary and 
deflected beam, Y0 being cos 0 in the symmetric Laue, 
sin 0 in the symmetric Bragg case. b = ~'0/~'H, the degree 
of asymmetry of the reflexion (>  0 in Laue case, < 0 
in Bragg case), K -  Polarization factor, equal to one 
and Icos 201 for the two directions of polarization. 
For special cases (symmetrical cases and 20 near 
zc/2) the values of [bl and K are 1. 

In order to reach a certain typical and general 
character for the results, norm scales for the angular 
variable and for the crystal thickness are introduced 
instead of the corresponding absolute scales" 

(1) A norm thickness at, connected with the absolute 
thickness do by the relation" i ' 

g .  I~u~l do,  (8) 

which for the present special cases becomes 

dn= I~,~1 do. (8'), 
2 .  ~'o 

d, is, up to a factor zc, identical with the symbol A 
introduced by Zachariasen. 

(2) A normalized angular variable y, related to t he  
absolute one, AO, by: 

1 sin 20~ . A0. (9) 
Y -  K "  I~,J,I 

z/O is defined so as always to run in the same 
sense as 0 and to have its zero value at the centre 
of the Rn diffraction pattern (in the Bragg case the o n e  
for zero absorption), y too is identical with the c o r -  
responding variable y of Zachariasen, apart from a 
factor -b/lb[ from whose omission the equality of 
sign of y and zlO follows, in the Bragg as well as in the 
Laue case. 

The numerical values of the quantities Used for the 
calculation were taken from literature and are collected 
in Table 1. 

With the values of Table 1, Rn and R0 patterns for 
Laue and Bragg cases have been computed and auto- 
matically plotted as a function of y and of AO for 16 
values of d, between 0.5 and 2.0. 

The theoretical curves presuppose a strictly mono- 
chromatic and plane primary wave which is given 
only approximately by the • doubl~-diffractometric d e -  
vice used for recording. The angular width of the beam 
reflected there by the first, the 'monochromator '  crystal 
is 1.1" for 422 and 0.8" for 333. To make allowance for 
this a second row of calculations was performed paral- 
lel to the one described above, R~n(dO), where the 
intrinsic diffraction pattern is convoluted with the angu- 
lar distribution of the primary beam. Exact, convolu- 

OB 
dn = 2/2 sin 0 
Y0 = lYHI 
a(cm -1) 
O = l - v  
f0 
~f'  
Af," 
~,0, } 
No Iv~,l × 107 

I~,~l 
g 

exp ( -  M) 

Table 1. List of values used 

422 
Laue 
case 

0"718 

Bragg 
case 

44.1 ° 
1.109 

0.693 

333 
Laue Bragg 
case case 

47.5 ° 
1-045 

0.676 
146 

7"5 .  10 -6 
6-44 
0.22 
0"33 

- 150 
-3.53 

6.85 4.55 
3.22 2.28 

-0.0515 -0.0776 
0.047 0.051 
0.914 0.909 

0.737 

tion was replaced for simplicity by an approximate 
one, where for each abscissa AO the intrinsic R0.n 
values were replaced by their mean values within the 
angular-ranges given. As expected, this procedure 
causes a smoothing of the extreme values, but, with 
the exception of the first pair of side maxima, no 
angular displacement of them. This may at first seem 
surprising, but it should be expected, as long as the 
averaging range is smaller than the distance between 
neighbouring maxima. 
. A selection of the calculated patterns is given in 
Fig. 1 for norm thickness 0.5, 0.75, 1.0, 1.4 and 2.0, 422 
only, Laue cases on the left, Bragg cases on the right. 

• I H .  Exper imenta l  data 

1. Preparation of crystal sheets 
The range of norm thickness which is mainly of inter- 

est, between 0"5 and 2.0, corresponds to an absolute 
thickness between 8 and 40/zm. To prepare crystal 
sheets of that order of thickness two ways are available 
and have both been tried: (a) Etching out a circular 
area from a thicke.r wafer, (b) Grinding down whole 
wafers followed by a semichemical polish on cloth with 
colloidal SiO2 suspension (A'Aerosil' polish).* The ad- 
vantage of method (a) lies in the easy manipulation of 
• the sheets, resulting from the fact that the thinned part  
is supported by the surrounding ring of thicker material 
continuing its lattice and thus avoiding any stress. 
'The advantage of (b) is the avoidance of strong thick- 
ness gradients. 

2. Recording technique 
The double-diffractometric device for taking the rec- 

ords is nearly the same as that described repeatedly 
earlier (Renninger, 1963, 1964, 1965) and is shown in 

* I am obliged to Dr K. Mayer, Siemens, Mtinchen for 
preparing sheets of the first kind and to Dr Deckert, Wacker 
Chemitronic, Burghausen for preparing sheets of the second 
kind. 
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Fig. 1. (a) Theoretical diffraction patterns (422). (a) Intrinsic. 
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Fig. 1. (cont.) (b) Convoluted with the angular distribution of the primary beam. 
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Fig. 2. A first crystal prepared for strongly asymmetric 
V reflexion (fl = - 0.92, b = - 24), of an order the same 
as that of the sample (or at least with equal ~.h2), 
offers to the second crystal a primary beam of large 
cross section but small angular divergence. A dia- 
phragm B measurably movable horizontally and verti- 
cally allows an exact choice of the location of the re- 
flecting area on the sample. It may be removed and re- 
adjusted reproducibly. The counter, pivotable around 
the second axis, may take up either the power of the 
deflected beam, PH, or that of the undeflected one, P0, 
and also, with the sample removed, that of the primary 
beam coming from the first crystal, po. The ratio of 
these latter two powers (P0 with the sample at an angular 
position somewhat away from a direction of diffraction) 
is a measure of the weakening by absorption, and hence 
of the thickness do at the reflexion position. By measu- 
ring the thickness in that way over the whole area of 
the sheet, reached by moving the diaphragm B in both 
directions, a thickness topograph of the sample is 
obtained which~then allows the choice of a reflecting 
place of desired thickness. This choice, is addition- 
ally determined by the requirement that no lattice 
defects are present nearby. This may be tested by 
X-ray topographs doubly exposed, with and with- 
out the diaphragm B. Fig. 3 shows such a topograph 
(422 transmission topograph, R0 and Rn together). As 
for the cross section of the diaphragm, a compromise 
had to be attempted between the requirement of a high 
intensity (to give a reasonable recording time) and the 
necessity for sufficient constancy of thickness and 
orientation within the reflecting area. A value between 

0.1 and 0.15 mm 2 was chosen as a rule. Additionally 
the shape was chosen as rectangular, the short side 
orientated nearer the direction of the thickness gradient. 

The first trial records of diffraction curves were 
taken by separate synchronized driving of crystal and 
recorder. However this method revealed irregular var- 
iations in the speed coordination, and therefore up to 
5% variation in the abscissa scale of the records, 
preventing exact angular evaluation. This matter gave 
rise to the search for an immediate measure of the 
crystal's angular position to be employed for abscissa 
input to an x - y  recorder. For such a measurement an 

11/1//11l 
Btr 

Monochromator 

-~B (88 ° for[t,22],95 ° for [333]) 

Fig. 2. Scheme of the experimental device. 

Ro 

Exp. 

Theor.  1101 1 
I d n = l  "1 dn=0"85 ~422 Laue case 

Exp. ordinate scales arbitrarily different 
(a) (b) 

333 Bragg case, RH only 
d, ~ 0"5 

Two different ordinate scales 1:10 

(c) 

Fig. 4. Examples of measured patterns together with the theoretical ones. (a) 422 Laue case, d, = 0.85. (b) 422 Laue case, d, = 1"1o 
(e) 333 Bragg case, d,=0.5, Ru only, on two ordinate scales, differentby a facror 10 [as for the theoretical curve; see Fig. l(b)]. 
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Ro RH 

422 transmission 
Fig. 3. Example of a topograph for fixing the point of reflexion. 

[To face p. 46 
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accuracy of one hundredth of a second of arc is 
necessary. This was achieved by an autocollimation 
telescope governed electronically by the use of an 
oscillating slit (Photoelektrischer Messtubus, Leitz, 
Wetzlar). The collimating mirror for its use is fixed on 
the specimen holder. 

In terms described above, the time needed for one 
record (crystal turned by 30 to 60") was 15 to 30 min, 
which is 30 s for one second of arc. 

IV. Resul ts  
1. General 

Fig. 4 gives some characteristic examples of dif- 
fraction-pattern records, each in comparison with cor- 
responding theoretical curves computed as described in 
§ n. 

2. Method of evaluation for determination of structure 
factor 

The fascinating possibility of using Pendell6sung 
diffraction patterns for measurement of structure fac- 
tors results from the fact that no further experimental 
data beyond the angular ones contained in the curves 
themselves are needed for the evaluation. For example 
no exact measurement of the absolute sheet thickness 
is necessary, for this latter is rather given by the an- 
gular distance of the outer maxima of the curve. The 
norm thickness d~, on the other hand, manifests it- 
self in the distance of the first maximum and the 
general curve shape. The two values combined fix the 
structure factor. 

The procedure of evaluation was chosen as follows: 
From the series of theoretical diffraction curves com- 
puted on the basis of literature data diagrams are 
derived in which families of curves give not only the 
angular distance of all side maxima as a function of 
the sheet thickness, but also the dependence of YM, 
on d, as well as that of AOMi on do. Fig. 5 shows such 
a diagram for the 422 Laue case. In the y-d, scale 
this diagram may be considered as valid for any other 
diffraction order or crystal. For in terms of this scale 
the diagram is not noticeably different from one corn- 

do (~22) 
m ,, 20 30 

10ty ' \  \ ~k '~'X~ \ ~ k [ ~  . . . .  r, , I . . . .  I ,- 

5 I MS M6 M 0 i" 
s" 

0.5 1.0 ~ dn 1,5 2.0 

Fig. 5. Angular distance of the Pendell6sung maxima M~-MIo 
as a function of thickness. 

puted by the use of the simple formula for non- 
absorbing crystals" 

sin 2 0rdl/i-2t/y 2) 
R H  ~ .. . . . . . . . . . . . .  1 +y2 

(Zachariasen 1946, p. 131). 
The influence of the absorption on the angular 

distance of the maxima (not of course on their height) 
is imperceptibly small. 

With the aid of the AOM~-do scale of the diagram, 
valid for the particular diffraction order chosen, the 
absolute thickness do from a given experimental dif- 
fraction curve is now obtained by measuring the an- 
gular distances of all Pendell6sung maxima and en- 
tering them on a separate scale which is then shifted 
on the diagram in a horizontal direction until it op- 
timally fits on the ordinate values of the family of 
curves. Then the abscissa location of that auxiliary scale 
gives the value of do. 

In order to obtain d,, two conditional equations are 
available. Firstly there is the universal connexion be- 
tween YM~ and d, for the first (eventually, but much less 
exactly, also the second) side maxima, rendered by 
the lowest curve of Fig. 5. The other conditional 
equation is contained in the connexion between the 
norm variables, y and d,, and the absolute ones, AO and 
do [combination of equations (8) and (9)]. For a given, 
measured pair of values of AOM1 and do we have the 
reciprocity relation" 

d,, do. AOM~ 1 1 
. . . . . . . . . . . .  ~x. (10) 

du YM~ YMi 

(d~-interplanar distance). 
The at, value resulting from the measured diffraction 

pattern is thus given by the abscissa of the intersection 
between the function YM~ (d,,) and the equilateral hyper- 
bola YMt = ~/d,. This intersection has to be determined 
graphically since YM1 (d,,) is not known explicitly. 
Because the intersection is very flat a vertical shearing 
of the coordinate system to an oblique one is convenient. 
In such a system Fig. 6 contains the yMl(d,,) curve of 
Fig. 5 and sections of o~/d,, hyperbolas for four values 
of the parameter ~ (0.6, 0.8, 1.0, and 1.2). The rectan- 
gularly flamed area is given magnified in Fig. 6(b), 
once more with a series of hyperbola sections in nar- 
rower steps of ~. From this figure, graphically again, 
the direct connexion between ~ and d, is derived and 
reproduced in Fig. 7, which then allows d, to be ob- 
tained from the experimental data alone. The values 
of d, and do immediately define the structure factor" 

I~,~1--,~ cos 0 d. (11) 
• " d o  

rca a Tea 3 cos0 a'. 
[Fgg°°[= eZ/mc 2.2  2 " ]NH[-- e2/mc 2.2" &" (12) 

The real part of the structure amplitude for the single 
resting, silicon atom then becomes 
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f o -  ~ ¢ e x p  , , , .  F,z9O._A f ,  (13) 
ISI 

[Sl = 8 (even indices) .  

3. Synopsis and discussion o f  the results 

In Table 2 the results of  all records suitable for 
quatitative evaluation are compiled (422 Laue case 
only). They include measurements on crystal sheets of  
a thickness range between 12 and 20 p m  (d, between 
0.8 and 1.2), six groups of measurements,  each con- 
taining a number  v (specified in the second r o w ) o f  
records obtained under identical conditions. 

The limits of  error given in row 11 are the standard 
deviations of  the mean values of  each group of meas- 
urements derived from the statistical scatter of  the 
single values. In Fig. 8 the resulting structure factors 
of  each group are represented once more, together 
with their s tandard deviations. It seems striking that 
those statistical limits of  the single groups are smaller 
than the mutual  scatter between them. This statement 
seems to point  to an unknown systematic error de- 
pending on the choice of  the respective reflexion area. 

Possibly small lattice distortions or a small thickness 
gradient within it may be responsible. 

The weighted mean for f029°° rendered in row 11 
remains in the range of  earlier literature data, but  
deviates significantly from the value which has seemed 
the best until now, measured by Kikuta,  Matsushita  & 
Kohra  (1970) and later on, improved, by Nakayama,  
Kikuta  & Kohra  (1971) from the angular width of 
the Bragg-case diffraction pattern of thick crystals. 

In summary it may be said that the method for 
determination of  structure factors described here is 
not yet quite comparable  in precision with the one 
reached by Kohra  and collaborators. But it may 
doubtless be essentially improved by further refine- 
ment of  the angular  measurements and of the prepa- 
ration of thin crystal sheets. The objection that the 
method is relatively complicated and therefore scarcely 
practicable in general may be countered by remarking 
that the main difficulty in applying it consists of  the 
necessity of  having a monochromator  crystal reflecting 
asymmetrically a diffraction order identical with that 
of  the sample. This requirement may however be 
overcome by application of an universally usable (n, + 

1 
2 
3 
4 
5 
6 
7 
8 

9 

10 

11 
12 

13 

Table 2. Compilation o f  results 

Group of measurements (Number) I II III IV V VI 
Number v of single records in each group 15 9 3 9 4 12 
d0(/tm) (from AOMI_6) 12.90 13.60 14.30 14.92 18.02 18.51 
AOMt (seconds of arc) 2"085 1"965 1.75 1 "66 1 "05 0-982 
0~ 1"177 1"169 1"093 1"085 0"828 0"795 
d, (from Fig. 7) 0.811 0.823 0.921 0-930 1-120 1"136 
do/d, 15"91 16"52 15"53 16"04 16"09 16"29 
lv/~,l (x 106) 69.6 67.1 71-3 69.1 68.9 68.0 
F ' 2 9 0 "  __ 7¢a 3 

c u r  e2/mc 2 . ;~2 • Iv/~l 52"2 50"3 53"5 51"8 51"6 51"0 

Single values 6.89 6.64 7.08 6-84 6.82 6.72 
+ 0.06 + 0.07 + 0-04s + 0.05 + 0.03 _ 0.025 

Weighted mean 6.81 + 0"05 (0.8 %) 
f0 Weighted mean of earlier 

measurements (Miyake, 1969) 6.82+ 0.04 (0.6 %) 
Kikuta, Matsushita & Kohra (1970) 
and Nakayama, Kikuta & Kohra (1971) 6.708 + 0.006 (0.I %) 

! 
(a) 

lJ / / / / °/ I 
/ o,2 
'1.25 

, , , , o o o 

0,6 0'.7 0:8 019 1,0dn 1.1 1.2 1.3 1.~ 1.s 

(b) 

Fig. 6. Curve for M1 and M2 of Fig. 5 in a sheared coordinate system together with sections of hyperbolas, ~/yr,! • (b) repeats 
the area rectangularly framed in (a) on a larger scale. The dotted branch of the MI curve allows for the angular distribution 
of theprimary beam [see Fig. l(b)]. 
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1,2 

1,1 

1,0 
dn 

"0,9 

"0.8 

0160=7 018 0=9110 17 112 

Fig. 7. Relation between dn and ~ derived from Fig. 6 (dotted 
branch). 

7,0 

. .  - 1 -  

"'i!' '°  Of 9 1~0 

Fig. 8. Single and mean results for ~. 

m) double monochromator (Renninger, 1938, 1955; 
Kohra, Hashizume & Yoshimura 1970). That means, 
it is true, a great loss of intensity which however may 
be compensated by other provisions (more X-ray power, 

longer measuring times, greater reflecting areas). Then 
the method should become comparable to other pre- 
cision methods. 

The author wishes to express his special thanks to 
his collaborator Dr J. Otto for fruitful discussions 
and suggestions, above all concerning the mathemati- 
cal section. He is also indebted to the Deutschen 
Forschungsgemeinschaft for generous assistance espe- 
cially for the experimental equipment. 
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